62 research outputs found

    Fast Exact Bayesian Inference for Sparse Signals in the Normal Sequence Model

    Full text link
    We consider exact algorithms for Bayesian inference with model selection priors (including spike-and-slab priors) in the sparse normal sequence model. Because the best existing exact algorithm becomes numerically unstable for sample sizes over n=500, there has been much attention for alternative approaches like approximate algorithms (Gibbs sampling, variational Bayes, etc.), shrinkage priors (e.g. the Horseshoe prior and the Spike-and-Slab LASSO) or empirical Bayesian methods. However, by introducing algorithmic ideas from online sequential prediction, we show that exact calculations are feasible for much larger sample sizes: for general model selection priors we reach n=25000, and for certain spike-and-slab priors we can easily reach n=100000. We further prove a de Finetti-like result for finite sample sizes that characterizes exactly which model selection priors can be expressed as spike-and-slab priors. The computational speed and numerical accuracy of the proposed methods are demonstrated in experiments on simulated data, on a differential gene expression data set, and to compare the effect of multiple hyper-parameter settings in the beta-binomial prior. In our experimental evaluation we compute guaranteed bounds on the numerical accuracy of all new algorithms, which shows that the proposed methods are numerically reliable whereas an alternative based on long division is not

    R\'enyi Divergence and Kullback-Leibler Divergence

    Full text link
    R\'enyi divergence is related to R\'enyi entropy much like Kullback-Leibler divergence is related to Shannon's entropy, and comes up in many settings. It was introduced by R\'enyi as a measure of information that satisfies almost the same axioms as Kullback-Leibler divergence, and depends on a parameter that is called its order. In particular, the R\'enyi divergence of order 1 equals the Kullback-Leibler divergence. We review and extend the most important properties of R\'enyi divergence and Kullback-Leibler divergence, including convexity, continuity, limits of σ\sigma-algebras and the relation of the special order 0 to the Gaussian dichotomy and contiguity. We also show how to generalize the Pythagorean inequality to orders different from 1, and we extend the known equivalence between channel capacity and minimax redundancy to continuous channel inputs (for all orders) and present several other minimax results.Comment: To appear in IEEE Transactions on Information Theor

    Second-order Quantile Methods for Experts and Combinatorial Games

    Get PDF
    We aim to design strategies for sequential decision making that adjust to the difficulty of the learning problem. We study this question both in the setting of prediction with expert advice, and for more general combinatorial decision tasks. We are not satisfied with just guaranteeing minimax regret rates, but we want our algorithms to perform significantly better on easy data. Two popular ways to formalize such adaptivity are second-order regret bounds and quantile bounds. The underlying notions of 'easy data', which may be paraphrased as "the learning problem has small variance" and "multiple decisions are useful", are synergetic. But even though there are sophisticated algorithms that exploit one of the two, no existing algorithm is able to adapt to both. In this paper we outline a new method for obtaining such adaptive algorithms, based on a potential function that aggregates a range of learning rates (which are essential tuning parameters). By choosing the right prior we construct efficient algorithms and show that they reap both benefits by proving the first bounds that are both second-order and incorporate quantiles

    A Second-order Bound with Excess Losses

    Get PDF
    We study online aggregation of the predictions of experts, and first show new second-order regret bounds in the standard setting, which are obtained via a version of the Prod algorithm (and also a version of the polynomially weighted average algorithm) with multiple learning rates. These bounds are in terms of excess losses, the differences between the instantaneous losses suffered by the algorithm and the ones of a given expert. We then demonstrate the interest of these bounds in the context of experts that report their confidences as a number in the interval [0,1] using a generic reduction to the standard setting. We conclude by two other applications in the standard setting, which improve the known bounds in case of small excess losses and show a bounded regret against i.i.d. sequences of losses

    Lipschitz Adaptivity with Multiple Learning Rates in Online Learning

    Get PDF
    We aim to design adaptive online learning algorithms that take advantage of any special structure that might be present in the learning task at hand, with as little manual tuning by the user as possible. A fundamental obstacle that comes up in the design of such adaptive algorithms is to calibrate a so-called step-size or learning rate hyperparameter depending on variance, gradient norms, etc. A recent technique promises to overcome this difficulty by maintaining multiple learning rates in parallel. This technique has been applied in the MetaGrad algorithm for online convex optimization and the Squint algorithm for prediction with expert advice. However, in both cases the user still has to provide in advance a Lipschitz hyperparameter that bounds the norm of the gradients. Although this hyperparameter is typically not available in advance, tuning it correctly is crucial: if it is set too small, the methods may fail completely; but if it is taken too large, performance deteriorates significantly. In the present work we remove this Lipschitz hyperparameter by designing new versions of MetaGrad and Squint that adapt to its optimal value automatically. We achieve this by dynamically updating the set of active learning rates. For MetaGrad, we further improve the computational efficiency of handling constraints on the domain of prediction, and we remove the need to specify the number of rounds in advance.Comment: 22 pages. To appear in COLT 201

    The momentum problem in MDL and Bayesian prediction

    Get PDF

    Combining Adversarial Guarantees and Stochastic Fast Rates in Online Learning

    Get PDF
    We consider online learning algorithms that guarantee worst-case regret rates in adversarial environments (so they can be deployed safely and will perform robustly), yet adapt optimally to favorable stochastic environments (so they will perform well in a variety of settings of practical importance). We quantify the friendliness of stochastic environments by means of the well-known Bernstein (a.k.a. generalized Tsybakov margin) condition. For two recent algorithms (Squint for the Hedge setting and MetaGrad for online convex optimization) we show that the particular form of their data-dependent individual-sequence regret guarantees implies that they adapt automatically to the Bernstein parameters of the stochastic environment. We prove that these algorithms attain fast rates in their respective settings both in expectation and with high probability

    Adaptive Hedge

    Full text link
    Most methods for decision-theoretic online learning are based on the Hedge algorithm, which takes a parameter called the learning rate. In most previous analyses the learning rate was carefully tuned to obtain optimal worst-case performance, leading to suboptimal performance on easy instances, for example when there exists an action that is significantly better than all others. We propose a new way of setting the learning rate, which adapts to the difficulty of the learning problem: in the worst case our procedure still guarantees optimal performance, but on easy instances it achieves much smaller regret. In particular, our adaptive method achieves constant regret in a probabilistic setting, when there exists an action that on average obtains strictly smaller loss than all other actions. We also provide a simulation study comparing our approach to existing methods.Comment: This is the full version of the paper with the same name that will appear in Advances in Neural Information Processing Systems 24 (NIPS 2011), 2012. The two papers are identical, except that this version contains an extra section of Additional Materia
    • …
    corecore